Description
In this talk, I will present a new zero-knowledge proof of knowledge for the syndrome decoding (SD) problem on random linear codes. Instead of using permutations like most of the existing protocols, we rely on the MPC-in-the-head paradigm in which we reduce the task of proving the low Hamming weight of the SD solution to proving some relations between specific polynomials. Specifically, we propose a 5-round zero-knowledge protocol that proves the knowledge of a vector x such that y=Hx and wt(x)<= w and which achieves a soundness error closed to 1/N for an arbitrary N.<br/> While turning this protocol into a signature scheme, we achieve a signature size of 11-12 KB for 128-bit security when relying on the hardness of the SD problem on binary fields. Using larger fields (like F_{256}), we can produce fast signatures of around 8 KB. This allows us to outperform Picnic3 and to be competitive with SPHINCS+, both post-quantum signature candidates in the ongoing NIST standardization effort. Since the security relies on the hardness of the syndrome decoding problem for random linear codes which is known to be NP-hard and for which the cryptanalysis state of the art has been stable for many years, it results in a conservative signature scheme. Moreover, our scheme outperforms all the existing code-based signature schemes for the common « signature size + public key size » metric.<br/> Joint work with Antoine Joux and Matthieu Rivain.<br/> lien: https://seminaire-c2.inria.fr/
Prochains exposés
- 
                              
    
            
                      
  
    
    
    
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Orateur : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]- 
                                        
    
    
Cryptography
 
 - 
                                        
    
    
 - 
                    
    
            
                      
  
    
    
    
Some applications of linear programming to Dilithium
Orateur : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…] - 
                              
    
      
                      
  
    
    
    
Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞
Orateur : Johanna Loyer - Inria Saclay
At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]- 
                                        
    
    
Cryptography
 
 - 
                                        
    
    
 - 
                              
    
      
                      
  
    
    
    
CryptoVerif: a computationally-sound security protocol verifier
Orateur : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]- 
                                        
    
    
Cryptography
 
 - 
                                        
    
    
 - 
                              
    
            
                      
  
    
    
    
Structured-Seed Local Pseudorandom Generators and their Applications
Orateur : Nikolas Melissaris - IRIF
We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]- 
                                        
    
    
Cryptography
 
 -