Description
Evaluation Interpolation algorithms are a key tool for the algebraic decoding of a large class of codes, including the famous Reed Solomon codes. Recent techniques allow the use of this type of decoding in the more general setting of fault tolerant algorithms, where one has to interpolate erroneous data (potentially computed by an untrusted entity). In this talk we will present algorithms to reconstruct a rational function (or vector) from faulty evaluations, focusing on the number of errors and how one can handle them beyond the classical worst case unique decoding radius<br/> lien: https://univ-rennes1-fr.zoom.us/j/97066341266?pwd=RUthOFV5cm1uT0ZCQVh6QUcrb1drQT09
Prochains exposés
-
Efficient zero-knowledge proofs and arguments in the CL framework
Orateur : Agathe Beaugrand - Institut de Mathématiques de Bordeaux
The CL encryption scheme, proposed in 2015 by Castagnos and Laguillaumie, is a linearly homomorphic encryption scheme, based on class groups of imaginary quadratic fields. The specificity of these groups is that their order is hard to compute, which means it can be considered unknown. This particularity, while being key in the security of the scheme, brings technical challenges in working with CL,[…]