Sommaire

  • Cet exposé a été présenté le 23 avril 2021.

Description

  • Orateur

    Markku-Juhani Saarinen

At PQShield, we’ve developed dedicated coprocessor(s) for lattice schemes, hash-based signatures, and code-based cryptography. These cryptographic modules are commercial rather than academic and designed to meet customer specifications such as a specific performance profile or Common Criteria and FIPS security certification requirements.
Hardware implementations of legacy RSA and Elliptic Curve cryptography were generally just “big integer” engines. Post-quantum algorithms use a much broader range of primitive operations and are generally more complex.
Monolithic hardware implementations are self-contained modules implementing the entire algorithm. A monolithic implementation has a clear security boundary but will lead to inflexibility and a relatively large area. On the other hand, a co-design approach will offload only those computations to special memory-mapped peripherals or custom instructions that benefit from it the most, e.g., SHAKE or large polynomial/vector/matrix circuitry. We discuss our experiences with both of these approaches, drawing from our engineering experience.

Prochains exposés

  • Cryptanalytical extraction of complex Neural Networks in black-box settings

    • 28 mars 2025 (10:00 - 11:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Orateur : Benoit COQUERET - INRIA, Thales CESTI

    With the widespread development of artifical intelligence, Deep Neural Networks (DNN) have become valuable intellectual property (IP). In the past few years, software and hardware-based attacks targetting at the weights of the DNN have been introduced allowing potential attacker to gain access to a near-perfect copy of the victim's model. However, these attacks either fail against more complex[…]
    • SemSecuElec

    • Side-channel

    • Machine learning

  • Advanced techniques for fault injection attacks on integrated circuits

    • 25 avril 2025 (10:00 - 11:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Orateur : Paul Grandamme - Laboratoire Hubert Curien, Université Jean Monnet

    The security of integrated circuits is evaluated through the implementation of attacks that exploit their inherent hardware vulnerabilities. Fault injection attacks represent a technique that is commonly employed for this purpose. These techniques permit an attacker to alter the nominal operation of the component in order to obtain confidential information. Firstly, we propose the utilisation of[…]
    • SemSecuElec

    • Fault injection

  • PHOENIX: Crypto-Agile Hardware Sharing for ML-KEM and HQC, hardware implementation of a PQC accelerator

    • 25 avril 2025 (11:00 - 12:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Orateur : Antonio RAS

    The security of the public-key cryptography protecting today and tomorrow’s communication is threatened by the advent of quantum computers. The transition to quantum-safe algorithms has begun: NIST has already standardized ML-KEM, a lattice-based KEM, and marked three code-based KEMs, including HQC, as alternatives for possible future standardization. The relative immaturity of all of these[…]
    • Cryptography

    • SemSecuElec

    • Hardware accelerator

  • Anomalies Mitigation for Horizontal Side Channel Attacks with Unsupervised Neural Networks

    • 23 mai 2025 (10:00 - 11:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Orateur : Gauthier Cler - SERMA Safety & Security

    The success of horizontal side-channel attacks heavily depends on the quality of the traces as well as the correct extraction of interest areas, which are expected to contain relevant leakages. If former is insufficient, this will consequently degrade the identification capability of potential leakage candidates and often render attacks inapplicable. This work assess the relevance of neural[…]
    • SemSecuElec

    • Side-channel

    • Machine learning

  • Side-Channel Based Disassembly on Complex Processors: From Microachitectural Characterization to Probabilistic Models

    • 27 juin 2025 (11:00 - 12:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Orateur : Julien Maillard - CEA

    Side-Channel Based Disassembly (SCBD) is a category of Side-Channel Analysis (SCA) that aims at recovering information on the code executed by a processor through the observation of physical side-channels such as power consumption or electromagnetic radiations. While traditional SCA often targets cryptographic keys, SCBD focuses on retrieving assembly code that can hardly be extracted via other[…]
    • SemSecuElec

    • Side-channel

    • Hardware reverse

Voir les exposés passés