Sommaire

  • Cet exposé a été présenté le 23 avril 2021.

Description

  • Orateur

    Markku-Juhani Saarinen

At PQShield, we’ve developed dedicated coprocessor(s) for lattice schemes, hash-based signatures, and code-based cryptography. These cryptographic modules are commercial rather than academic and designed to meet customer specifications such as a specific performance profile or Common Criteria and FIPS security certification requirements.
Hardware implementations of legacy RSA and Elliptic Curve cryptography were generally just “big integer” engines. Post-quantum algorithms use a much broader range of primitive operations and are generally more complex.
Monolithic hardware implementations are self-contained modules implementing the entire algorithm. A monolithic implementation has a clear security boundary but will lead to inflexibility and a relatively large area. On the other hand, a co-design approach will offload only those computations to special memory-mapped peripherals or custom instructions that benefit from it the most, e.g., SHAKE or large polynomial/vector/matrix circuitry. We discuss our experiences with both of these approaches, drawing from our engineering experience.

Prochains exposés

  • FeFET based Logic-in-Memory design, methodologies, tools and open challenges

    • 29 novembre 2024 (10:00 - 11:00)

    • Inria Center of the University of Rennes - - Aurigny room

    Orateur : Cédric Marchand - University of Lyon - Lyon Institute of Nanotechnology (UMR CNRS 5270)

    Data-centric applications such as artificial intelligence and the Internet of Things (IoT) impose increasingly stringent demands on the performance, the security and the energy efficiency of modern computing architectures. Traditional approaches are often unable to keep pace with these requirements making necessary to explore innovative paradigms such as in-memory computing. This paradigm is[…]
    • SemSecuElec

  • TrustSoC : a heterogeneous secure-by-design SoC architecture

    • 29 novembre 2024 (11:00 - 12:00)

    • Inria Center of the University of Rennes - - Aurigny room

    Orateur : Raphaële Milan - Université Jean Monnet Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516

    Since the 1970s, the complexity of systems on a chip has grown significantly. In order to improve system performance, manufacturers are integrating an increasing number of heterogeneous components on a single silicon chip. The incorporation of these components renders SoCs highly versatile yet significantly complex. Their multipurpose nature makes them suitable for use in a variety of domains,[…]
    • SemSecuElec

  • The influence of flicker noise on ring oscillator-based TRNGs

    • 20 décembre 2024 (11:00 - 12:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Orateur : Licinius-Pompiliu BENEA - Univ. Grenoble Alpes, CEA, LETI

    Ring oscillators (ROs) are often used in true random number generators (TRNGs). The jitter of their clock signal, used as a source of randomness, stems from thermal and flicker noises. While thermal noise jitter is often identified as the main source of randomness, flicker noise jitter is not taken into account due to its autocorrelated nature which greatly complexifies modelling. However, it is a[…]
    • SemSecuElec

    • GDAv

  • Hardware Trojan Horses and Microarchitectural Side-Channel Attacks: Detection and Mitigation via Hardware-based
    Methodologies

    • 24 janvier 2025 (10:00 - 11:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Orateur : Alessandro PALUMBO - CentraleSupélec, IRISA, Inria

    Hardware Trojan Horses that are software-exploitable can be inserted into microprocessors, allowing attackers to run unauthorized code or escalate privileges. Additionally, it has been demonstrated that attackers could observe certain microprocessor features - seemingly unrelated to the program's execution - to exfiltrate secrets or private data. So, even devices produced in secure foundries could[…]
    • SemSecuElec

    • Canaux auxiliaires

    • Vulnérabilités micro-architecturales

    • Cheval de Troie matériel

  • Covert Communication Channels Based On Hardware Trojans: Open-Source Dataset and AI-Based Detection

    • 28 février 2025 (10:00 - 11:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Orateur : Alan Díaz Rizo - Sorbonne Université Lip6

    The threat of Hardware Trojan-based Covert Channels (HT-CCs) presents a significant challenge to the security of wireless communications. In this work, we generate in hardware and make open-source a dataset for various HT-CC scenarios. The dataset represents transmissions from a HT-infected RF transceiver hiding a CC that leaks information. It encompasses a wide range of signal impairments, noise[…]
    • SemSecuElec

    • Apprentissage machine

    • Cheval de Troie matériel

  • Cryptanalytical extraction of complex Neural Networks in black-box settings

    • 28 mars 2025 (10:00 - 11:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Orateur : Benoit COQUERET - INRIA, Thales CESTI

    With the widespread development of artifical intelligence, Deep Neural Networks (DNN) have become valuable intellectual property (IP). In the past few years, software and hardware-based attacks targetting at the weights of the DNN have been introduced allowing potential attacker to gain access to a near-perfect copy of the victim's model. However, these attacks either fail against more complex[…]
    • SemSecuElec

    • Canaux auxiliaires

    • Apprentissage machine

Voir les exposés passés