Description
Cryptographic algorithms are primarily designed to be secure in the black-box model, where an attacker can only observe their input/output behavior. However in practice, algorithms are rarely executed in a completely isolated environment and additional information is often leaked. In the context of mobile applications or connected objects, devices often lack secure storage to protect secret keys, and their generally open execution environment exposes a large attack surface. This hostile environment is captured by the white-box attack model. While many white-box implementation of block ciphers have been published since 2002, asymmetric cryptosystems have been very little studied. In my PhD thesis, we got interested in white-box implementations of ECDSA. This led us to participate in the WhibOx Contest that was organized as part of the TCHES workshops in 2021. During three months, developpers were invited to submit ECDSA white-box implementations and attackers to try to break them. In this talk, I will introduce the white-box model before explaining the specificities of the ECDSA algorithm in this context. I will then present the different attacks that we used to break almost all the challenges of the WhibOx Contest.
Prochains exposés
-
Verification of Rust Cryptographic Implementations with Aeneas
Orateur : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Orateur : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Orateur : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-