Description
Cryptographic algorithms are primarily designed to be secure in the black-box model, where an attacker can only observe their input/output behavior. However in practice, algorithms are rarely executed in a completely isolated environment and additional information is often leaked. In the context of mobile applications or connected objects, devices often lack secure storage to protect secret keys, and their generally open execution environment exposes a large attack surface. This hostile environment is captured by the white-box attack model. While many white-box implementation of block ciphers have been published since 2002, asymmetric cryptosystems have been very little studied. In my PhD thesis, we got interested in white-box implementations of ECDSA. This led us to participate in the WhibOx Contest that was organized as part of the TCHES workshops in 2021. During three months, developpers were invited to submit ECDSA white-box implementations and attackers to try to break them. In this talk, I will introduce the white-box model before explaining the specificities of the ECDSA algorithm in this context. I will then present the different attacks that we used to break almost all the challenges of the WhibOx Contest.
Prochains exposés
-
Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞
Orateur : Johanna Loyer - Inria Saclay
At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]-
Cryptography
-
-
CryptoVerif: a computationally-sound security protocol verifier
Orateur : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-
-
Structured-Seed Local Pseudorandom Generators and their Applications
Orateur : Nikolas Melissaris - IRIF
We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]-
Cryptography
-
-
Predicting Module-Lattice Reduction
Orateur : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-