Description
Whereas theoretical attacks on standardized crypto primitives rarely lead to actual practical attacks, the situation is different for side-channel attacks. Improvements in the performance of side-channel attacks are of utmost importance. In this paper, we propose a framework to be used in key-recovery side-channel attacks on CCA-secure post-quantum encryption schemes. The basic idea is to construct chosen ciphertext queries to a plaintext checking oracle that collects information on a set of secret variables in a single query. Then a large number of such queries is considered, each related to a different set of secret variables, and they are modeled as a low-density parity-check code (LDPC code). Secret variables are finally determined through efficient iterative decoding methods, such as belief propagation, using soft information. The utilization of LDPC codes offers efficient decoding, source compression, and error correction benefits. It has been demonstrated that this approach provides significant improvements compared to previous work by reducing the required number of queries, such as the number of traces in a power attack. The framework is demonstrated and implemented in two different cases. On one hand, we attack implementations of HQC in a timing attack, lowering the number of required traces considerably compared to attacks in previous work. On the other hand, we describe and implement a full attack on a masked implementation of Kyber using power analysis. Using the ChipWhisperer evaluation platform, our real-world attacks recover the long-term secret key of a first-order masked implementation of Kyber-768 with an average of only 12 power traces.
Prochains exposés
-
Predicting Module-Lattice Reduction
Orateur : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-
-
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-