Description
Les améliorations apportées par Atkin et Elkies à l'algorithme de Schoof dans les années 80 pour le calcul du nombre de points d'une courbe elliptique définie sur un corps fini peuvent être vues comme une compréhension approfondie de la l-torsion de ces groupes. Par soucis d'effectivité, nous nous proposons dans la première partie de l'exposé d'aborder cet aspect sous un angle résolument calculatoire. À ces fins, la détermination explicite d'isogénies entre courbes elliptiques s'avère nécessaire. Dans une deuxième partie, nous ferrons donc un tour des algorithmes dont on dispose pour cette tâche depuis les travaux initiateurs de Couveignes dans les années 90. Ici aussi, nous essayerons d'illustrer dans la mesure du possible ces méthodes par des exemples concrets.<br/> Enfin, nous conclurons en expliquant brièvement comment ces algorithmes de calcul d'isogénie, pourtant motivés initialement par la construction de cryptosystèmes à base de courbes elliptiques, sont utilisés depuis peu pour améliorer sensiblement l'attaque dite "descente de Weil" initiée par Frey.
Prochains exposés
-
Predicting Module-Lattice Reduction
Orateur : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-
-
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-