Description
A promising avenue for realising scalable proof systems relies on the existence of 2-cycles of pairing-friendly elliptic curves. More specifically, such a cycle consists of two elliptic curves E/Fp and E’/Fq that both have a low embedding degree and also satisfy q = #E(Fp) and p = #E’(Fq). These constraints turn out to be rather restrictive; in the decade that has passed since 2-cycles were first proposed for use in proof systems, no new constructions of 2-cycles have been found.
In this talk, we present joint work with Costello and Naehrig, where we generalise the notion of cycles of pairing-friendly elliptic curves to study cycles of pairing-friendly abelian varieties, with a view towards realising more efficient pairing-based SNARKs. We show that considering abelian varieties of dimension larger than 1 unlocks a number of interesting possibilities for finding pairing-friendly cycles, and we give several new constructions that can be instantiated at any security level.
Infos pratiques
Prochains exposés
-
Dual attacks in code-based (and lattice-based) cryptography
Orateur : Charles Meyer-Hilfiger - Inria Rennes
The hardness of the decoding problem and its generalization, the learning with errors problem, are respectively at the heart of the security of the Post-Quantum code-based scheme HQC and the lattice-based scheme Kyber. Both schemes are to be/now NIST standards. These problems have been actively studied for decades, and the complexity of the state-of-the-art algorithms to solve them is crucially[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Orateur : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-