Description
Monsky-Washnitzer cohomology is a p-adic cohomology theory for algebraic varieties over finite fields, based on algebraic de Rham cohomology. Unlike the l-adic (etale) cohomology, it is well-suited for explicit computations, particularly over fields of small characteristic. We describe how to use Monsky-Washnitzer to construct efficient algorithms for computing zeta functions of varieties over finite fields, using as an example the case of hyperelliptic curves in odd characteristic.
Prochains exposés
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Orateur : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptographie
-
Primitive asymétrique
-
Mode et protocole
-
-
Post-quantum Group-based Cryptography
Orateur : Delaram Kahrobaei - The City University of New York