Sommaire

  • Cet exposé a été présenté le 31 mai 2002.

Description

  • Orateur

    Kiran Kedlaya - Berkeley

Monsky-Washnitzer cohomology is a p-adic cohomology theory for algebraic varieties over finite fields, based on algebraic de Rham cohomology. Unlike the l-adic (etale) cohomology, it is well-suited for explicit computations, particularly over fields of small characteristic. We describe how to use Monsky-Washnitzer to construct efficient algorithms for computing zeta functions of varieties over finite fields, using as an example the case of hyperelliptic curves in odd characteristic.

Previous sessions

Voir les exposés passés