Sommaire

  • Cet exposé a été présenté le 07 juin 2002.

Description

  • Orateur

    Alan Lauder - Oxford University

I will describe an algorithm for computing the zeta function of an arbitrary hyperelliptic curve in characteristic 2. This is a generalisation of an earlier method of myself and Wan, which tackled a restricted class of curves. The algorithm reduces the problem to that of computing the L-function of an additive character sum over an open subset of the projective line. This latter task can be achieved using the Dwork-Reich trace formula, Dwork's analytic construction of an additive character, and a method for `cohomological reduction' similar to the `Hermite reduction' algorithm used in the symbolic integration of rational functions. The talk is based upon joint work with Daqing Wan. See http://web.comlab.ox.ac.uk/oucl/work/alan.lauder/ for a version of the earlier paper, which has now appeared in LMS JCM, and also two other related papers.

Prochains exposés

  • Séminaire C2 à INRIA Paris

    • 16 janvier 2026 (10:00 - 17:00)

    • INRIA Paris

    Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ 
  • Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs

    • 23 janvier 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven

    The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]
    • Cryptography

Voir les exposés passés