Description
L'etude et la classification des codes autoduaux binaires a une longue histoire. Les travaux de Conway-Sloane, puis de Eric Rains, ont montre qu'il faut etudier en meme temps qu'un code $C$, son ombre $S$. Apres quelques rappels sur ces notions, nous introduirons une notion d'extremalite, qui fait intervenir le couple ($C$, $S$), et est definie par leurs polynomes enumerateurs des poids. Une propriete interessante de ces codes est de contenir des designs; cette propriete nous permet d'etablir des resultats de classification concernant les codes extremaux dans notre sens, de longueur $n$, dont l'ombre a un poids $n/2-8$, prolongeant ainsi la classification de N. Elkies des codes dont l'ombre est de poids $n/2$ et $n/2-4$.
Prochains exposés
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Orateur : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptographie
-
Primitive asymétrique
-
Mode et protocole
-
-
Post-quantum Group-based Cryptography
Orateur : Delaram Kahrobaei - The City University of New York