Sommaire

  • Cet exposé a été présenté le 27 septembre 2002.

Description

  • Orateur

    Heinrich Matzat - Universitaet Heidelberg

Additive polynomials over a field $ F$ of characteristic $ p>0$ have the form $ f(X)=\sum\limits^m_{k=0} a_k X^{p^k}$ with $ a_k \in F$. In case $ a_0 \neq 0$ they are Galois polynomials with an $ \mathbb{F}_p$-vector space of solutions, and any finite Galois extension $ E$ over $ F$ can be generated by such an additive polynomial.<br/> The Galois group of $ f(X)$ or $ E/F$ , respectively, acts linearly on the solution space and thus is a subgroup of the linear group $ \operatorname{GL}_m(\mathbb{F}_p)$. It can be computed via subgroup descent from $ \operatorname{GL}_m(\mathbb{F}_p)$ in analogy to the Stauduhar method. On the other hand, any additive polynomial can be obtained as a characteristic polynomial of a Frobenius module over $ F$, i.e., an $ F$-vector space $ M$ with a $ \phi$-semilinear Frobenius operator $ \Phi$, where $ \phi$ denotes the Frobenius endomorphism of $ F$. The smallest connected linear algebraic group in which the representing matrix of $ \Phi$ is contained gives an upper bound for the Galois group.<br/> Since lower bounds can be obtained by specialization of the matrix in analogy to the classical Dedekind criterion, this technique gives a useful tool for the construction of Galois extensions with given (connected) Galois group (in positive characteristic). This will be demonstrated by examples, among others the Dickson groups $ G_2(q)$. References:<br/> Goss, D.: Basic structures of function field arithmetic. Springer-Verlag 1996, Chapter I.<br/> Malle, G.: Explicit realization of the Dickson groups $ G_2(q)$ as Galois groups. Preprint, Kassel 2002.<br/> Matzat, B. H.: Frobenius modules and Galois groups. Preprint, Heidelberg 2002.

Prochains exposés

  • Post-Quantum Public-Key Pseudorandom Correlation Functions for OT

    • 12 décembre 2025 (13:45 - 14:45)

    • Salle Guernesey à l'ISTIC

    Orateur : Mahshid Riahinia - ENS, CNRS

    Public-Key Pseudorandom Correlation Functions (PK-PCF) are an exciting recent primitive introduced to enable fast secure computation. Despite significant advances in the group-based setting, success in the post-quantum regime has been much more limited. In this talk, I will introduce an efficient lattice-based PK-PCF for the string OT correlation. At the heart of our result lie several technical[…]
  • Predicting Module-Lattice Reduction

    • 19 décembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Paola de Perthuis - CWI

    Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]
    • Cryptography

Voir les exposés passés