Sommaire

  • Cet exposé a été présenté le 13 décembre 2002.

Description

  • Orateur

    Robert Carls - University of Leiden

Let A be an abelian variety over a finite field. Liftable endomorphisms of A act on the deformation space. In the ordinary case there's a canonical way of lifting Frobenius. We will show, that the action of Frobenius has a unique fixpoint, the canonical lift. A proof will be given in terms of Barsotti-Tate groups using the Serre-Tate theorem. Drinfeld's proof of this theorem will be sketched (see [1]). It will be explained how to make the above action explicit for elliptic curves. In characterictic 2 one can describe the action by the AGM (arithmetic geometric mean) sequence. References :<br/> [1] N.Katz: Serre-Tate local moduli, in 'surfaces algebriques', Springer lecture notes 868, 1981<br/> [2] R.Carls: in prep., http://www.math.leidenuniv.nl/~carls/extract.ps

Prochains exposés

  • Dual attacks in code-based (and lattice-based) cryptography

    • 19 septembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Charles Meyer-Hilfiger - Inria Rennes

    The hardness of the decoding problem and its generalization, the learning with errors problem, are respectively at the heart of the security of the Post-Quantum code-based scheme HQC and the lattice-based scheme Kyber. Both schemes are to be/now NIST standards. These problems have been actively studied for decades, and the complexity of the state-of-the-art algorithms to solve them is crucially[…]
    • Cryptography

  • Lie algebras and the security of cryptosystems based on classical varieties in disguise

    • 07 novembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Mingjie Chen - KU Leuven

    In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups.   In this talk, we[…]
    • Cryptography

Voir les exposés passés