Description
Dans cet exposé, nous montrerons comment donner une étude concrète du revêtement modulaire d'une courbe elliptique définie sur Q, f: X_0(N) \rightarrow E. Pour cela, nous utiliserons le point de vue analytique de f qui est plus adapté pour nos calculs. En particulier, nous expliquerons comment calculer le degré de cette application et nous donnerons une étude plus ou moins expérimentale des points critiques et de ramifications de f. Afin d'étudier les points critiques aux pointes de X_0(N), nous devrons déterminer le développement de Fourier des formes modulaires en ces pointes.
Prochains exposés
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-