Description
Les polynômes de Rudin-Shapiro trés utilisés en théorie du signal sont définis par $P_0(z) = 1$, $Q_0(z)=1$ et $P_{n+1}(z) = P_n(z) + z^{2^n}Q_n(z),$ $Q_{n+1}(z) = Q_n(z) - z^{2^n}Q_n(z)$. En 1968, Littlewood a montré que les moments d'ordre 4 des polynômes $P_n(z)$ i.e. $\mathcal{M}_4(P_n)=\int_0^1 |P_n(e^{2i\pi t})|^4\, dt $ satisfaisaient une récurrence linéaire de degré $2$ et en a déduit que $\mathcal{M}_4(P_n)\sim \frac43 4^n.$ Plus tard Saffari a conjecturé que pour $q$ pair $\mathcal{M}_q(P_n)\sim \frac{2^{q/2}}{q/2+1} 2^{nq/2}$.<br/> Nous montrons ce résultat pour $q\leqslant 52$ et donnons la récurrence minimale explicite pour $q\leqslant 32$. Ce travail a été rendu possible grâce à un nouvel algorithme pour calculer les moments de ces polynômes.
Prochains exposés
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Orateur : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptographie
-
Primitive asymétrique
-
Mode et protocole
-
-
Post-quantum Group-based Cryptography
Orateur : Delaram Kahrobaei - The City University of New York