Description
QKD is a landmark of how quantum resources allow us to implement cryptographic
functionalities with a level of security that is not achievable only with classical resources.
However, key agreement is not sufficient to implement all functionalities of interest, and it is
well-known that they cannot be implemented with perfect security, even if we have access
to quantum resources. Thus, computational assumptions are necessary even in the quantum
world.
In this talk, I will cover recent examples that even in the computational setting, quantum
resources may give an advantage in the required assumption. More concretely, I will talk
about quantum implementations of multi-party computation and public-key encryption
under weaker computational assumptions than their classical counterparts. Moreover, I will
discuss new cryptographic assumptions that are inherently quantum, which have changed
the landscape of the feasibility of cryptographic primitives in the quantum world.
Practical infos
Next sessions
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry; Rachelle Heim Boissier; Épiphane Nouetowa; Dung Bui. Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-