Table of contents

Description

  • Speaker

    Paul Grandamme - Laboratoire Hubert Curien, Université Jean Monnet

The security of integrated circuits is evaluated through the implementation of attacks that exploit their inherent hardware vulnerabilities. Fault injection attacks represent a technique that is commonly employed for this purpose. These techniques permit an attacker to alter the nominal operation of the component in order to obtain confidential information.

Firstly, we propose the utilisation of the thermal effect of an infrared laser bench for the injection of permanent faults into the Flash memory of unpowered components. This novel attack vector gives rise to the delineation of a comprehensive new fault model, encompassing both the physical and application levels.

Secondly, we describe the use of unfocused X-ray sources for the injection of faults into the Flash memories of both powered and unpowered components. Furthermore, the thermal and temporal recovery phenomena are also characterised. The design and characterisation of masks that enable the focused injection of faults are demonstrated.

These novel attacks on unpowered devices, facilitated by fault injection using X-rays and lasers, necessitate a re-evaluation of the effectiveness of protection mechanisms against such attacks, particularly in regard to these novel attack vectors.

Practical infos

Next sessions

  • Covert Communication Channels Based On Hardware Trojans: Open-Source Dataset and AI-Based Detection

    • February 28, 2025 (10:00 - 11:00)

    • Inria Center of the University of Rennes - - IRISA - Salle Aurigny (D165)

    Speaker : Alan Díaz Rizo - Sorbonne Université Lip6

    The threat of Hardware Trojan-based Covert Channels (HT-CCs) presents a significant challenge to the security of wireless communications. In this work, we generate in hardware and make open-source a dataset for various HT-CC scenarios. The dataset represents transmissions from a HT-infected RF transceiver hiding a CC that leaks information. It encompasses a wide range of signal impairments, noise[…]
    • SemSecuElec

    • Machine learning

    • Hardware trojan

  • Measurement the thermal component of clock jitter used as entropy source by TRNGs

    • February 28, 2025 (11:00 - 12:00)

    • Inria Center of the University of Rennes - - IRISA - Salle Aurigny (D165)

    Speaker : Arturo GARAY - STMicroelectronics

    Introduction Measuring the thermal component of clock jitter as an entropy source for True Random Number Generators (TRNGs) is compulsory for the security and evaluation of clock-jitter based TRNGs. However, identifying and isolating the local thermal noise component from other noise sources, particularly flicker noise, while performing a precise measurement remains a challenge. Current[…]
    • SemSecuElec

    • TRNG

  • Cryptanalytical extraction of complex Neural Networks in black-box settings

    • March 28, 2025 (10:00 - 11:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Speaker : Benoit COQUERET - INRIA, Thales CESTI

    With the widespread development of artifical intelligence, Deep Neural Networks (DNN) have become valuable intellectual property (IP). In the past few years, software and hardware-based attacks targetting at the weights of the DNN have been introduced allowing potential attacker to gain access to a near-perfect copy of the victim's model. However, these attacks either fail against more complex[…]
    • SemSecuElec

    • Side-channel

    • Machine learning

  • Anomalies Mitigation for Horizontal Side Channel Attacks with Unsupervised Neural Networks

    • May 23, 2025 (10:00 - 11:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Speaker : Gauthier Cler - SERMA Safety & Security

    The success of horizontal side-channel attacks heavily depends on the quality of the traces as well as the correct extraction of interest areas, which are expected to contain relevant leakages. If former is insufficient, this will consequently degrade the identification capability of potential leakage candidates and often render attacks inapplicable. This work assess the relevance of neural[…]
    • SemSecuElec

    • Side-channel

    • Machine learning

  • Side-Channel Based Disassembly on Complex Processors: From Microachitectural Characterization to Probabilistic Models

    • June 27, 2025 (11:00 - 12:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Speaker : Julien Maillard - CEA

    Side-Channel Based Disassembly (SCBD) is a category of Side-Channel Analysis (SCA) that aims at recovering information on the code executed by a processor through the observation of physical side-channels such as power consumption or electromagnetic radiations. While traditional SCA often targets cryptographic keys, SCBD focuses on retrieving assembly code that can hardly be extracted via other[…]
    • SemSecuElec

    • Side-channel

    • Hardware reverse

Show previous sessions