Description
Side-Channel Based Disassembly (SCBD) is a category of Side-Channel Analysis (SCA) that aims at recovering information on the code executed by a processor through the observation of physical side-channels such as power consumption or electromagnetic radiations. While traditional SCA often targets cryptographic keys, SCBD focuses on retrieving assembly code that can hardly be extracted via other means. A typical example is bootloader code, which is the first program executed by a processor at a device startup. Finding vulnerabilities in bootloader code could allow an attacker to compromise the entire device. SCBD has been shown feasible on microcontrollers with simple microachitectural complexity and small Instruction Sets Architecture (ISA). However, as System-on-Chips (SoCs) become ubiquitous in various systems such as smartphones, automotive or avionics, the threat posed by SCBD on these devices needs to be evaluated. In this presentation, we investigate the feasibility of SCBD on SoCs. We first study the impact of the microachitectural complexity of SoC's processors on existing SCBD techniques. This brings us to the observation that the latter struggle to provide accurate predictions on small-scale phenomena, leaving a high amount of uncertainty from an attacker's perspective. However, coarse-grained events, such as accesses to the main memory, can be accurately distinguished. In the second part of this presentation, we deal with the uncertainty inherent to SCBD on SoCs by developing a generic and flexible Soft-Analytical Side-Channel Attack (SASCA) framework. This tool leverages factor graphs and the Belief Propagation (BP) algorithm to efficiently handle probabilistic information. This framework allows us to introduce the concept of Soft-Analytical Side-Channel Based Disassembly (SASCBD), which leverages the aforementioned framework to efficiently aggregate imperfect predictions from SCBD. This new approach efficiently exploits the structure of ISA and supports the addition of rich knowledge, such as behaviors at the scale of full programs.
Practical infos
Next sessions
-
Advanced techniques for fault injection attacks on integrated circuits
Speaker : Paul Grandamme - Laboratoire Hubert Curien, Université Jean Monnet
The security of integrated circuits is evaluated through the implementation of attacks that exploit their inherent hardware vulnerabilities. Fault injection attacks represent a technique that is commonly employed for this purpose. These techniques permit an attacker to alter the nominal operation of the component in order to obtain confidential information. Firstly, we propose the utilisation of[…]-
SemSecuElec
-
Fault injection
-
-
PHOENIX : the first crypto-agile hardware solution for ML-KEM and HQC
Speaker : Antonio RAS
The security of the public-key cryptography protecting today and tomorrow's communication is threatened by the advent of quantum computers. To address this challenge, post-quantum cryptography is employed to devise new quantum-resistant cryptosystems. The National Institute of Standards and Technology (NIST), which led the quantum-safe transition, has already standardized the first lattice KEM[…]-
Cryptography
-
SemSecuElec
-
Hardware accelerator
-
-
Anomalies Mitigation for Horizontal Side Channel Attacks with Unsupervised Neural Networks
Speaker : Gauthier Cler - SERMA Safety & Security
The success of horizontal side-channel attacks heavily depends on the quality of the traces as well as the correct extraction of interest areas, which are expected to contain relevant leakages. If former is insufficient, this will consequently degrade the identification capability of potential leakage candidates and often render attacks inapplicable. This work assess the relevance of neural[…]-
SemSecuElec
-
Side-channel
-
Machine learning
-
-
Cryptanalytical extraction of complex Neural Networks in black-box settings
Speaker : Benoit COQUERET - INRIA, Thales CESTI
With the widespread development of artifical intelligence, Deep Neural Networks (DNN) have become valuable intellectual property (IP). In the past few years, software and hardware-based attacks targetting at the weights of the DNN have been introduced allowing potential attacker to gain access to a near-perfect copy of the victim's model. However, these attacks either fail against more complex[…]-
SemSecuElec
-
Side-channel
-
Machine learning
-
-
Fine-grained dynamic partitioning against cache-based side channel attacks
Speaker : Nicolas Gaudin - Trasna
The growth of embedded systems takes advantage of architectural advances from modern processors to increase performance while maintaining a low power consumption. Among these advances is the introduction of cache memory into embedded systems. These memories speed up the memory accesses by temporarily storing data close to the execution core. Furthermore, data from different applications share the[…]-
SemSecuElec
-
Micro-architectural vulnerabilities
-
Hardware architecture
-