Table of contents

  • This session has been presented November 26, 2021.

Description

  • Speaker

    David Lubicz (DGA-MI)

In this paper, a new approach for the detection of ransomware based on the runtime analysis of their behaviour is presented. The main idea is to get samples by using a mini-filter to intercept write requests, then decide if a sample corresponds to a benign or a malicious write request. To do so, in a learning phase, statistical models of structured file headers are built using Markov chains. Then in a detection phase, a maximum likelihood test is used to decide if a sample provided by a write request is normal or malicious. We introduce new statistical distances between two Markov chains, which are variants of the Kullback-Leibler divergence, which measure the efficiency of a maximum likelihood test to distinguish between two distributions given by Markov chains. This distance and extensive experiments are used to demonstrate the relevance of our method.

Practical infos

Previous sessions

Show previous sessions