Description
The main purpose of cryptography is to ensure secure communication. In order to achieve this goal, cryptographic schemes make an intensive use of random numbers. Given that the security of these schemes highly depends on these numbers, it is important to produce high-quality random numbers. Knowing that most cryptographic modules are nowadays implemented in logic devices, we investigated True Random Number Generators (TRNGs) that can be implemented in this kind of technology. Because of the critical nature of TRNGs in cryptographic schemes, their source and their quality must be evaluated in details.
Historically, TRNGS were considered as black boxes which produce sequences of random numbers. There were therefore solely evaluated using statistical tests. However, this consideration turns out to be not acceptable for security. Modern approaches (e.g. AIS 31) consist in characterizing sources of randomness and randomness extraction mechanisms.
In this talk, we will highlight the main challenges and modern approaches in TRNG security evaluation. One of these challenges is the characterization of the source of randomness. It leads us to consider various electronic noises that need to be characterized and for which, the contribution to the overall entropy need to be assessed.
Practical infos
Next sessions
-
Advanced techniques for fault injection attacks on integrated circuits
Speaker : Paul Grandamme - Laboratoire Hubert Curien, Université Jean Monnet
The security of integrated circuits is evaluated through the implementation of attacks that exploit their inherent hardware vulnerabilities. Fault injection attacks represent a technique that is commonly employed for this purpose. These techniques permit an attacker to alter the nominal operation of the component in order to obtain confidential information. Firstly, we propose the utilisation of[…]-
SemSecuElec
-
Fault injection
-
-
PHOENIX : the first crypto-agile hardware solution for ML-KEM and HQC
Speaker : Antonio RAS
The security of the public-key cryptography protecting today and tomorrow's communication is threatened by the advent of quantum computers. To address this challenge, post-quantum cryptography is employed to devise new quantum-resistant cryptosystems. The National Institute of Standards and Technology (NIST), which led the quantum-safe transition, has already standardized the first lattice KEM[…]-
Cryptography
-
SemSecuElec
-
Hardware accelerator
-
-
Anomalies Mitigation for Horizontal Side Channel Attacks with Unsupervised Neural Networks
Speaker : Gauthier Cler - SERMA Safety & Security
The success of horizontal side-channel attacks heavily depends on the quality of the traces as well as the correct extraction of interest areas, which are expected to contain relevant leakages. If former is insufficient, this will consequently degrade the identification capability of potential leakage candidates and often render attacks inapplicable. This work assess the relevance of neural[…]-
SemSecuElec
-
Side-channel
-
Machine learning
-
-
Cryptanalytical extraction of complex Neural Networks in black-box settings
Speaker : Benoit COQUERET - INRIA, Thales CESTI
With the widespread development of artifical intelligence, Deep Neural Networks (DNN) have become valuable intellectual property (IP). In the past few years, software and hardware-based attacks targetting at the weights of the DNN have been introduced allowing potential attacker to gain access to a near-perfect copy of the victim's model. However, these attacks either fail against more complex[…]-
SemSecuElec
-
Side-channel
-
Machine learning
-
-
Fine-grained dynamic partitioning against cache-based side channel attacks
Speaker : Nicolas Gaudin - Trasna
The growth of embedded systems takes advantage of architectural advances from modern processors to increase performance while maintaining a low power consumption. Among these advances is the introduction of cache memory into embedded systems. These memories speed up the memory accesses by temporarily storing data close to the execution core. Furthermore, data from different applications share the[…]-
SemSecuElec
-
Micro-architectural vulnerabilities
-
Hardware architecture
-
-
Side-Channel Based Disassembly on Complex Processors: From Microachitectural Characterization to Probabilistic Models
Speaker : Julien Maillard - CEA
Side-Channel Based Disassembly (SCBD) is a category of Side-Channel Analysis (SCA) that aims at recovering information on the code executed by a processor through the observation of physical side-channels such as power consumption or electromagnetic radiations. While traditional SCA often targets cryptographic keys, SCBD focuses on retrieving assembly code that can hardly be extracted via other[…]-
SemSecuElec
-
Side-channel
-
Hardware reverse
-