Description
True randomness is all about unpredictability, which can neither be qualified nor quantified by examining statistics of a sequence of digits. Unpredictability is a property of random phenomena, which is measured in bits of information entropy. Application of randomness spans from art to numerical computing and system security. Random numbers enable various cryptographic algorithms, protocols and secured implementations by providing secret keys, initialization vectors, random challenges and masks. As embedded electronics continue to be integrated into our daily lives, security becomes an indispensable requirement for an embedded system. According to the renowned Kerckhoffs’ principle, a cryptographic system should be secure even if the attacker knows everything about the system, except the key. In modern computers and embedded systems, this key is usually generated by executing a True Random Number Generator. Therefore, it is essential that unpredictable random numbers are available in secure embedded systems. Unfortunately, designing a TRNG is not trivial and different from conventional digital circuit design, since most digital circuits are primarily developed to behave in a deterministic digital manner. Instead of pursuing a stable and predictable behavior of the circuit, the TRNG design aims for a stable and robust unpredictability. Producing unpredictable output is usually undesired for an integrated circuit, and is sometimes regarded as a design failure. Having mistakes or being careless at any step of the TRNG design and fabrication procedure may lead to insufficient entropy or/and a malfunctioned TRNG. A True Random Number Generator (TRNG) circuit is designed to be sensitive to a particular physical phenomenon when it is in use, and to be resistant to process variations and other unwanted random physical phenomena. In order to tackle the lack of compact and efficient TRNGs on FPGAs, we proposed a novel TRNG based on edge sampling.
Practical infos
Next sessions
-
Advanced techniques for fault injection attacks on integrated circuits
Speaker : Paul Grandamme - Laboratoire Hubert Curien, Université Jean Monnet
The security of integrated circuits is evaluated through the implementation of attacks that exploit their inherent hardware vulnerabilities. Fault injection attacks represent a technique that is commonly employed for this purpose. These techniques permit an attacker to alter the nominal operation of the component in order to obtain confidential information. Firstly, we propose the utilisation of[…]-
SemSecuElec
-
Fault injection
-
-
PHOENIX : the first crypto-agile hardware solution for ML-KEM and HQC
Speaker : Antonio RAS
The security of the public-key cryptography protecting today and tomorrow's communication is threatened by the advent of quantum computers. To address this challenge, post-quantum cryptography is employed to devise new quantum-resistant cryptosystems. The National Institute of Standards and Technology (NIST), which led the quantum-safe transition, has already standardized the first lattice KEM[…]-
Cryptography
-
SemSecuElec
-
Hardware accelerator
-
-
Anomalies Mitigation for Horizontal Side Channel Attacks with Unsupervised Neural Networks
Speaker : Gauthier Cler - SERMA Safety & Security
The success of horizontal side-channel attacks heavily depends on the quality of the traces as well as the correct extraction of interest areas, which are expected to contain relevant leakages. If former is insufficient, this will consequently degrade the identification capability of potential leakage candidates and often render attacks inapplicable. This work assess the relevance of neural[…]-
SemSecuElec
-
Side-channel
-
Machine learning
-
-
Cryptanalytical extraction of complex Neural Networks in black-box settings
Speaker : Benoit COQUERET - INRIA, Thales CESTI
With the widespread development of artifical intelligence, Deep Neural Networks (DNN) have become valuable intellectual property (IP). In the past few years, software and hardware-based attacks targetting at the weights of the DNN have been introduced allowing potential attacker to gain access to a near-perfect copy of the victim's model. However, these attacks either fail against more complex[…]-
SemSecuElec
-
Side-channel
-
Machine learning
-
-
Fine-grained dynamic partitioning against cache-based side channel attacks
Speaker : Nicolas Gaudin - Trasna
The growth of embedded systems takes advantage of architectural advances from modern processors to increase performance while maintaining a low power consumption. Among these advances is the introduction of cache memory into embedded systems. These memories speed up the memory accesses by temporarily storing data close to the execution core. Furthermore, data from different applications share the[…]-
SemSecuElec
-
Micro-architectural vulnerabilities
-
Hardware architecture
-
-
Side-Channel Based Disassembly on Complex Processors: From Microachitectural Characterization to Probabilistic Models
Speaker : Julien Maillard - CEA
Side-Channel Based Disassembly (SCBD) is a category of Side-Channel Analysis (SCA) that aims at recovering information on the code executed by a processor through the observation of physical side-channels such as power consumption or electromagnetic radiations. While traditional SCA often targets cryptographic keys, SCBD focuses on retrieving assembly code that can hardly be extracted via other[…]-
SemSecuElec
-
Side-channel
-
Hardware reverse
-