Filtrer par type de contenu

Sélectionnez un ou plusieurs filtres. Ce choix permettra de recharger la page pour afficher les résultats filtrés.

Supprimer tous les filtres

656 résultats

    • Séminaire

    • Cryptographie

    Packings on the Grassmann manifold: an interesting approach for non coherent space-time coding

    • 21 novembre 2003

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Jean-Claude Belfiore - ENST

    The need of high data rates on the radio channel (WiFi and its future for example) explains the increasing number of researchers working on space-time codes. Preparing Wireless IP systems, some companies and some researchers are promoting the use of non coherent space-time codes.<br/> We show that designing a non coherent space-time code is equivalent to finding some good packings on the Grassmann[…]
    • Séminaire

    • Cryptographie

    Efficient arithmetic on (hyper-)elliptic curves over finite fields

    • 04 avril 2003

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Tanja Lange - Ruhr-Universität Bochum

    The talk will be concerned with arithmetic on elliptic and hyperelliptic curves. We show how fast the arithmetic can get by clever choices of the coordinates and present special kinds of curves which allow even faster arithmetic using the Frobenius endomorphism. For elliptic curves this has been used to achieve fast arithmetic for the past years. However, so far arithmetic in the ideal class group[…]
    • Séminaire

    • Cryptographie

    Sur le calcul du corps de définition d'un point de torsion d'une jacobienne d'une courbe de genre quelconque

    • 23 janvier 2004

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Bas Edixhoven - Leiden University

    En commençant par un calcul explicite sur une courbe elliptique, j'expliquerai ma stratégie pour calculer le corps de définition d'un point de torsion d'une jacobienne d'une courbe de genre quelconque. En gros, cette stratégie consiste à calculer le polynôme minimal d'une coordonnée d'un tel point par une approximation (complexe ou p-adique) avec une précision suffisante. J'expliquerai comment la[…]
    • Séminaire

    • Cryptographie

    Research on Cryptographic Algorithms: beyond triple-DES, AES and RSA

    • 22 novembre 2002

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Bart Preneel - University of Leuven

    In this talk we discuss the state of the art and progress in cryptographic algorithms such as encryption algorithms and digital signature techniques. We present at a high level the challenges to the designers (and users) of cryptographic algorithms and we discuss the major components of the solution, that is, research, standardization, and open evaluation. We also discuss the status of the NESSIE[…]
    • Séminaire

    • Cryptographie

    Monsky-Washnitzer Cohomology and Computing Zeta Functions

    • 31 mai 2002

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Kiran Kedlaya - Berkeley

    Monsky-Washnitzer cohomology is a p-adic cohomology theory for algebraic varieties over finite fields, based on algebraic de Rham cohomology. Unlike the l-adic (etale) cohomology, it is well-suited for explicit computations, particularly over fields of small characteristic. We describe how to use Monsky-Washnitzer to construct efficient algorithms for computing zeta functions of varieties over[…]
    • Séminaire

    • Cryptographie

    Galois Groups of Additive Polynomials

    • 27 septembre 2002

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Heinrich Matzat - Universitaet Heidelberg

    Additive polynomials over a field $ F$ of characteristic $ p>0$ have the form $ f(X)=\sum\limits^m_{k=0} a_k X^{p^k}$ with $ a_k \in F$. In case $ a_0 \neq 0$ they are Galois polynomials with an $ \mathbb{F}_p$-vector space of solutions, and any finite Galois extension $ E$ over $ F$ can be generated by such an additive polynomial.<br/> The Galois group of $ f(X)$ or $ E/F$ , respectively, acts[…]